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SUMMARY

A method for analyzing shock coalescence which includes three~dimensional
effects is developed. This method is based on an extension of the axisymmetric solu-
tion. The asymmetric effects are introduced through an additional set of governing
equations, which are derived by taking the second circumferential derivative of the
standard shock equations in the plane of symmetry. The coalescence method is consis-
tent with and has been combined with a nonlinear sonic boom extrapolation program
which is based on the method of characteristics. Though the two sets of governing
shock equations are uncoupled, the flow equations, developed in the same manner, are
weakly coupled through the first derivative of the circumferential velocity. Since
the characteristic behind the shock is necessary to fix shock location, an iterative
procedure between the axisymmetric and asymmetric equations is used. The extrapola-
tion program, originally unable to handle shock coalescence, is now able to extrapo-
late pressure signatures which include embedded shocks from an initial data line in
the plane of symmetry at approximately one body length from the axis of the aircraft
to the ground.

Descriptions of the axisymmetric shock coalescence solution, the asymmetric
shock coalescence solution, the method of incorporating these solutions into the
extrapolation program, and the methods used to determine spatial derivatives needed
in the coalescence solution are included. Results of the method are shown for a body
of revolution at a small, positive angle of attack. The body was designed so that
embedded shocks would be included in the near-field data. These results are compared
with results from two widely used sonic boom propagation methods which are based on
modified linear theory. Signatures are shown at several stages of the extrapolation
process through the atmosphere in an attempt to understand the reasons for the dif-
ferences in the results of the three methods.
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Rb notation used in sketch F

Re r coordinate of shock intersection
Re'’ previous r coordinate of intersection location in iterations
R{¢) r coordinate of surface intersections, r = R(¢)
r radial coordinate
S entropy
3 = 8(x,r,0)
~ 628
S = ——E
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Assh jump in entropy across shock
T temperature
T = in plane ¢ =0
u
(=]
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U velocity
u axial component of velocity
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Notation over symbols:
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. denotes a unit vector

- denotes a variable evaluated in the vertical plane ¢ =0
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1+« INTRODUCTION
1.1 Purpose

This paper presents an analysis and method of solution for shock coalescence
with asymmetric effects. The analysis is consistent with and an extension of a sonic
boom propagation theory developed at New York University (refs. 1 to 3) and has been
incorporated into the computer program associated with that work. To provide infor-
mation on the need for and the importance of this work, a brief review of sonic boom
prediction, extrapolation, minimization, test methods, and some weaknesses of these
methods is included in the next section.

1.2 Review of Sonic Boom Work

The sonic boom continues to be a major obstacle in the path of the development
of an economically viable supersonic transport fleet. Though much progress has been
made in understanding, predicting, and minimizing the sonic boom, the ultimate goal
of producing an aircraft with sonic boom characteristics acceptable for overland
flight remains elusive.

Most currently used prediction methods are based on theories developed by Whit-
ham (ref. 4) for a supersonic projectile, and by Walkden (ref. 5), who extended the
analysis to include lifting bodies. These theories combined with the supersonic area
rule theory developed by Hayes (ref. 6) led to the generally accepted prediction
methods described in some detail in reference 7. Originally, it was felt that all
sonic boom pressure signatures would have attained the standard N-wave shape when
they intersected the ground. Work by McLean (ref. 8) indicated that for airplanes
with extensive lifting surfaces this was not so. The "freezing"” effects of the real
atmosphere pointed out by Hayes (ref. 9) reinforced the idea that the signature may
still retain midfield effects when it intersects the ground. A midfield signature
retains effects of the airplane shape and thus offers this shaping as a possible
avenue of minimizing the sonic boom.

Using as a basis the sonic boom prediction method, the idea of a midfield signa-
ture, and work by Jones (ref. 10) on the far-field minimum, Seebass and George devel-
oped a minimization procedure (refs. 11 and 12) which predicted a minimizing equiva=-
lent area distribution for given flight conditions. Extensions to this procedure for
the real atmosphere and nose bluntness relaxation are given in references 13 and 14.
Working inversely, the designer can develop a model whose area matches the above
boom-constrained distribution. This process was used in the design of three wing-
body configurations, which were tested experimentally for sonic boom levels (refs. 15
and 16). Conclusions from that study indicated that the approach is valid, but that
the boundary layer and wake effects must be considered in the design process. Two
feasibility studies (refs. 17 and 18), in which systems, passenger loads, safety, and
efficiency considerations were included, indicated that a low-boom aircraft was
within the realm of possibility, but that extensive in-depth studies and trade-offs
were needed. Certain characteristic features of low-boom aircraft seemed to evolve
from the studies. These features included a large wing area, long root chord, posi-
tive dihedral, twist, camber, and canards.



As theoretical sonic boom studies have evolved, so have the accompanying test
methods. The earliest propagation methods were based entirely on far-field theory
and thus required as input data a far-field N wave. In order for the pressure signa-
ture to have traveled a sufficient number of body lengths to have attained its N wave
form in the existing supersonic tunnels, model size was limited to approximately
1 inch. With the advance in knowledge of the importance of the midfield signature
and the development of propagation methods which accepted this data, wind~tunnel
model size became limited by the requirement that the data be axisymmetric. Since
tests have shown that disturbances caused by volume are nearly axisymmetric at about
three body lengths away and that those caused by the 1lifting forces have also lost
much of their asymmetry, this lowered restraint generally allowed model size to
increase to approximately 6 inches. Model builders can include many more features in
a 6-inch model than in one which is only 1 inch. Even so, details such as twist,
camber, and nacelles are still nearly impossible to include on a 1/50-scale model
with the accuracy needed.

To increase the reliability of testing the latest low-boom transport designs,
the models should be limited only by tunnel size and flow guality within the tunnel.
This would allow model size to increase to roughly 2 feet in span and 3 feet in
length. This size would allow one model to be used for both force and sonic boom
tests. In addition to allowing improved accuracy in construction, this size also
reduces the problems with the boundary layer and the sting support system (ref. 19).

Propagation methods based on linearized theory become inaccurate for strong
shocks where significant entropy changes occur and for high altitude and Mach numbers
where the cumulative effects of second-order terms become significant (ref. 20). The
propagation method (refs. 1 and 2) developed at New York University (NYU) by Ferri,
Siclari, and Ting eliminates many of these problems. Nonlinear terms have been
retained, and altitude effects and entropy effects are included. The method of solu-
tion is the modified method of characteristics (MMOC), in which step sizes on the
order of several body lengths may be taken without destroying the accuracy of the
program. The program includes nonlinear effects, which are important in the near
field, but still does not account for nonaxisymmetric effects, which are also very
prominent. A second program (ref. 3), developed by Ferri, Ting, and Lo, includes the
asymmetric effects near the vertical line of symmetry - where sonic boom effects are
strongest. This is accomplished by bringing in three-dimensional effects through
derivatives in the circumferential direction which do not vanish in the vertical
plane of symmetry. The method introduces the effects of asymmetry without the pro-
hibitive difficulty of the full three-dimensional method of characteristics.

As stated, the low-boom transport model will have a very complicated, rotational
near field with embedded shocks from the wing-fuselage juncture, from engine pods,
and from other parts of the aircraft. In the near field, these embedded shocks will
not have coalesced into one shock. Though the NYU program accepts input at approxi-
mately one body length, it cannot handle the coalescence of shocks, and thus, calcu-

lations cease.

Using the same approach as that used to include the three-dimensional effects in
the MMOC program, this paper presents the analysis for axisymmetric and nonaxisymmet-
ric shock coalescence.



1.3 Outline of Discussion

As previously stated, the major contribution of this paper is the analysis and
solution for shock coalescence with asymmetric effects, as described in section 3.
However, because this method was developed to be used with the MMOC program, it is
also necessary to describe in some detail the methods of that program, the method in
which the shock coalescence is combined with the MMOC program, and the methods used
to find additional information needed for the solution.

To this end, a fairly detailed description of the equations and method of solu-
tion of the MMOC program are given in section 2. Also included in that section is a
description of the closure condition of the method. The limitations introduced into
the outgoing characteristic to enable larger step sizes are also described.

Section 3 includes the analysis and method of solution for shock coalescence -
both the axisymmetric and asymmetric cases. Once the point of shock intersection is
located, the axisymmetric solution is found and then the asymmetric solution. No
iteration is needed, since the axisymmetric and asymmetric governing equations are
not coupled.

Spatial derivatives such as u and u are necessary for the asymmetric
coalescence solution, and these variables are not defined in the MMOC program. Sec-
tion 4 describes the methods used to obtain their values. Used in section 4 is a
method developed by Lin and Rubinov (ref. 21), which states that if the curvature of
a shock is known, then the spatial derivatives behind the shock are also known. The
system of equations for the derivatives becomes indeterminate for shocks of zero
strength and, therefore, unsuitable for numerical computations with weak shocks. 1In
the current analysis, it is assumed that the resultant shock is of finite strength,
but the isentropic shock or expansion wave of the opposite family needed to equalize
the system is so weak that continuity of the variables across the wave may be used.
For shocks of zero strength, the curvature of the shock (or that of the centerline of
an expansion fan) differs from that of the characteristic ahead of and behind the
shock because of the jump of the curvature of the streamline, which is continuous in
slope. To generalize the system for shocks of any strength, it is necessary to
regroup the equations in such a way that the common factor which vanishes for zero
shock strength cancels analytically.

The procedure for combining the shock coalescence with the MMOC program is
described in section 5. This section includes a description of how the intersection
point is found, how data immediately in front of the intersection point are deter-
mined, the solution, and then how the solution is recombined with the characteristic
network.

Section 6 describes results which were obtained for a lifting body of revolution
with embedded shock coalescence during propagation. It is beyond the scope of this
paper to conduct a parametric study with many different bodies. Rather, the emphasis
is placed on the development and incorporation of the method of shock coalescence
with the MMOC program, and a simple body of revolution is used to illustrate the
results. Extrapolated data from the MMOC program are compared with results from two
well-known sonic boom prediction methods which are based on modified linear theory.

This work was done to satisfy in part the requirements for the degree of Doctor
of Science at George Washington University, February 1983.



2. THEORETICAL BACKGROUND FOR MMOC SONIC BOOM PROPAGATION METHOD
2.1 Governing BEquations and Closure Conditions
The analysis developed in this paper is an extension of the methods developed in

references 1 to 3. Governing equations for the steady-state, inviscid flow field
including gravitational terms and variation in total enerqgy are (ref. 22)

Momentum

Tew=-IR,¢ (2.1)

o]

Continuity

oV eV + ¥V o Vp =0 (2.2)
Energy

Ve VH =0 (2.3)
State

where the total enthalpy H 1is defined by
2
H=7—y—1RT+3—+gZ (2.5)

In these equations, g9, is the acceleration due to gravity, E is the body force
vector per unit mass (G = -g Vz, where 2z is Ehe vertical coordinate), R 1is the
gas constant, and g is the fluid speed (q = IV[).

It is convenient for computational purposes to transform the set of governing
equations. The Gibbs relation (ref. 23) is introduced in the form

Tvs =2 _ygr-Lyp (2.6)
Yy -1 p

Xhere* S is_the fluid egtropg per unit mass. Use of equation (2.6) and the relation
V.V = V(q /2) + (V x V) x V allows pressure and density to be eliminated from the

momentum and continuity equations, which become

> >
(Vv xV) xV=rVs - VH (2.7)



and

2 >
> v q V. &
Vlv_ 2.V<2>— > (2.8)
a a
in which the speed of sound a 1is given by a2 = YRT. It is noted here for later

use that in view of equation (2.3), the component of equation (2.7) along a stream-
line is

v eVS =0 (2.9)

Ahead of the bow shock, the flow is assumed to be uniform with velocity U .
@D
The temperature Tw(z) and the pressure pw(z) are given functions of the altitude
z which satisfy the condition of hydrostatic equilibrium

Tm(z) dp_(z)
pw(z) dz

[
i
w|a

Jump conditions for the system consisting of equations (2.3) to (2.8) are discussed
in detail later. However, it is pointed out here that the total enthalpy remains
constant across a stationary shock wave (ref. 23). This, together with equa-

tion (2.3) implies that H 1is invariant along streamlines

2
U

[

+ 9z = RT _(z_) + 5~ + gz (2.10)

2
H=—L—Rr + & 5

Yy -1 2

where the notation z_ is introduced to denote the elevation of a particular stream-
line in the uniform flow ahead of the bow shock. In the numerical computations
described later, the function zw(x,y,z) was actually calculated instead of H
itself, by replacing equation (2.3) with V VzGD = 0. Once z  or H and the
velocity are known, then T can be considered as known from equation (2.10). Thus,
the system consisting of equations (2.3), (2.7), and (2.8) can be regarded as a sys-
tem of five equations for five unknowns: u, v, w, S, and H,

For an airplane flying at constant altitude Y, it is convenient to introduce
cylindrical coordinates x, ¥, ¢, shown in sketch A, with velocity components u,
v, W where

z =Y - r cos ¢
and
P I  EE U I
V=1 ax Tdar *tx AP



(x,u)
(¢,w)

(r,v)

e ]
e v e on]

IRRERREERA RN AR AR AR R R

Ground

Sketch A

In this coordinate system, the five fundamental equations (2.3), (2.7), and (2.8) are
expressed as

OH OH w OH
% r Trae T .

U TV *roe = 0 (2.11)

2 2 2

du ov v 1ow 1/ 0 3 WD \u +v +w

x Toac trtrog az(“ ox P Var 1 a¢>< 5 + @% (2.12)
oS _OH _ fdu _dv) (10u _ow

Tox "=~ V(br - bx) + w(r ¢ ~ 6x) (2.13)
0S _ oH _ (O0v _ Ou 10v _ow _w

T ar = or u(bx - 6r> + W<r 3y ~ Br r) (2.14)

ro0 " roe Mox “rop) TVer "raptry *

In the vertical plane of symmetry, the circumferential velocity w vanishes as do
the first derivatives of all variables except w with respect to the circumferential
direction. Thus in the plane ¢ = 0, equations (2.11) to (2.14) become

dH dH
u % + v or - 0 (2.16)
o _wlyou [ _9\ov _uvfouw ov), v 1dw,k agv_, (2.17)
T2 Bx 2/ ar 2\ar 7 ox r  r d¢ 2 - ‘
a a a a
ds dH du  dv
?x ~ Bx V(S?" ax) (2.18)




6s _oH _ . (8v _ du
TB?'B?‘“(@x br) (2:19)

Equation (2.15) is identically satisfied in the plane ¢ = 0.

Equations (2.18) and (2.19) are combined to give

ov ou 1 (o)) OH
dx ~ or q(T dn 6n> (2.20)

where gq 3/0n = u(d/0r) - v(d/0x), and d/dn is the derivative normal to the stream—
line. Equation (2.20) represents one scalar component of the original vector equa-
tion (2.7). The second independent relation will be taken to be equation (2.9),
which in the plane of symmetry becomes

oS oS
u ™ + v or =0 (2.21)

Equations (2.16), (2.17), (2.20), and (2.21) now form a set of four equations
with five unknowns: u, v, S, H, and 9dw/0). For the axisymmetric approximation,
it is assumed that the term (1/r)(dw/d¢) is negligible at large values of r. Thus,
a closed system of equations is attained. If this assumption is not made, then
another method for closing the system must be found.

Since equation (2.15) is an identity in the plane ¢ = 0, its first derivative
with respect to ¢ 1is taken. This process introduces an additional equation, but it
also introduces several new unknowns. The second derivative with respect to ¢ 1is
taken of equations (2.11) to (2.14) and (2.9). The derivatives of equations (2.13)
and (2.14) are combined by multiplying (2.13) by u/g and subtracting the product of
v/qa and equation (2.14). This process introduces five new equations and five new
unknowns: 32u/d¢2, 082v/d¢2, d2H/d3¢p2, 025/d¢2, and d3w/d>. The entire system
now consists of 9 equations and 10 unknowns.

The closure assumption introduced in references 1 to 3 is

3
6_v3~’ o -%—Z’, (2.22)
3

This assumption is justified on the basis that the primary contribution to the cross
flow can be described by a function of the form

w ~ w(x,r) sin ¢

which is a valid approximation describing asymmetries due to 1ift or small asymme-
tries which are present at approximately one to two body lengths from an aircraft.
With the closure condition, the system reduces to nine equations and nine unknowns.



o

The last five equations formed by taking derivatives in the circumferential
direction are listed bhelow where the closure condition, equation (2.22), has already

been applied. For convenience,

(x,7) ] 2u

_ ulx,r - - ax _

= Tg0 - Bxlge0
Uo X Ue

Equations (2.11) to (2.15) yvield

UH + ud_ + vH_+ v+ 2 {
X X r r F
~ ~ 1 [-2. —_— ~ -2,
u +v -—Juu +uvfu + v ) + vV
b4 r 32 X r X
~ ~ 1 - ~ ds
P =_[Q§_T6_S_T_§+
r X g|on n n
2wfuv - va - uw
q r

TS + H + uu + vv

-

+ 2¥ 3
r r

- A - A -_A
urwx+vrwr+vw

the following notation is introduced:

d2u dw
~  0¢2 A B0
5o — 14=0 5 = —14=0
U Uso
0 (2.23)
~ A 1 ~ —— —_—— _
=_‘ri ; +§E1(2uux + vu, + vvx)
(295, 4w 4 aar) + 95 - ;)
+ 2{3(5\;1_ +GGX+§) +-r&(\-r\7+ﬁfi
a2 ~2f= v - W
+ w) - az(\:lx + =+ vp +¥)] (2.24)
I (el e ('1',9_5_ _ g
2\ T YY\"dn T an
q
Qv (2.25)
on
(2.26)
0 (2.27)

Equation (2.25) results from the combination of the derivatives of equations (2.13)

and (2.14)., The operator 0/dn

is defined beneath equation (2.20).

BEqua-



tions (2.16), (2.17), (2.20), (2.21), and (2.23) to (2;27)~form a system of nine
equations and nine unknowns: E, ;, G, ﬁ, §, u, v, H, and §. The first set,
equations (2.16), (2.17), (2.20), and (2.21), are coupled weakly to the second set,
equations (2.23) to (2.27), through the term (1/r) (0w/0¢) in equation (2.17).

The method of characteristics (ref. 24) is applied to equations (2.17)
and (2.20) and results in the following characteristic eguations:

- t - - -
cot p,gg-i dae +-995~E(T ds - dH)
q

sin dr .
- sin 8

sin(® + p)

=0 (2.28)

These equations are valid along the characteristic directions

dr -
& 2.29
ax tan(e t u) ( )
- -2 -2 - . . -1 - -
where g =\\u + v , 0 (the direction of the flow) = tan (v/u), and
p (the Mach angle) = sin_1(1/M).

A second set of compatibility equations are derived from equations (2.24) and
(2.25). Equation (2.24) is expressed as

v (2.30)

where TJ stands for the right-hand side of equation (2.24) rewritten in the form

_6&1—~a_qﬁ)~ﬁa_?r>
F=-gtet :E-qu<- ox T35/ T WVier t o0
a
o =~ ~ —_ —— - a2
+ ;—-TS - H+ 2au + 2vv - W + W

52
~ - ~2
+ 2w + Vv 2-)-a M2,§g

52 00

+
Q
T
|
4



in which 08/8c is the derivative along the streamline defined by
qd/0%c = u(d/0x) + v(d/dr). Then equations (2.25) and (2.30) yield a second set of
compatibility equations

au + tan(@ F p) av = sin p dr (£J cos p - g sin p) (2,31)
sin(® + p) cos(6 F p)

along the same characteristic directions

o = tan(® e ) (2.32)

where J represents the right-hand side of equation (2.25).

Equations (2.28), (2.16), and (2.21) provide solutions for wu, v, S, and H
for a given value of w, and equations (2.31), (2.23), (2.26), and (2.27) yield
a, v, S, H, and w. Solutions are obtained by simultaneously solving for the
velocity components at the characteristic intersections and for enthalpy and entropy

along streamlines.

2.2 Shock Conditions

The treatment of the bow shock and all embedded shocks is approached in the same
manner. When the complete set of five shock equations are limited to the plane
¢ = 0, the (-momentum equation vanishes indentically. There are four remaining egqua-
tions to solve for the shock shape %r and u, v, 5, and T behind the shock.

The compatibility condition along the ct characteristic behind the shock provides
the additional equation needed to close the system for the axisymmetric case, The
equations needed to determine G, ;, Q, %, and 5 are derived by taking the first
derivative with respect to ¢ of the ¢-momentum equation across the shock and the
second derivative with respect to ¢ of the remaining shock equations. (The proce-
dure for deriving these shock equations is described in detail in Section 3.) This
process introduces six unknowns, G, ;, G, 5, f, and f, and five new equations.
The compatibility equation for the second derivative quantities, equation (2.31), is
used to close the system behind the shock,

2.3 Method of Solution

Because the two sets of equations are coupled only weakly through ;, the method
of solution is iterative. A value of w 1is assumed, and the system_consisting of
equations (2.16), (2.21), and (2.28) is solved for wu, v, H, and_S._This N
information is used to solve the second set of equations for u, v, H, S, and w.
The entire procedure is repeated until the value of w converges,

The program is an extrapolation program, and it requires initial input approxi-
mately one body length from the axis of the aircraft., These data must be provided
either by experimental methods or by programs which calculate the entire flow field
about an aircraft. From the first data points on the initial line, a new bow shock
point is located. Calculations proceed from this point along the ¢~ characteristic
until the initial data line is intersected. Thus, a new data line is created. This

10



process is repeated until finally the new data line is a C~ characteristic which
terminates at the last data point on the initial line. The next C~ characteristic
is then started, and calculations continue to ground intersection. {(See sketch B.)

Ground

characteristic

+ . .
C characteristic

X= Calculation point Initial data line

Sketch B

2.4 Far-Field Modifications

Because of the extreme propagation distances necessary with this method and thus
the possibility of accumulated error in many steps taken, the outgoing 6 + p char-
acteristics are modified according to Whitham theory to allow for a gradual increase
of step size in C* to the order of several body lengths as r increases. Within
this modification, the characteristics are no longer considered to be straight but
are curved in a manner consistent with Whitham theory. The modification is applied
at each step in the 6 + p characteristic and along the shock waves,

Whitham (ref. 4) gives the following relationship for the slope of the charac-
teristic

k F
dx _ =
ar = P» 172
2r
where
M2
2 y+1 = = /2P
Bco= Mco_1 kco= Y —B—; F=r o
The exact characteristic is modified by
k F k F
dx @® ©
ar - Be * —73 = cot(6 + p) - B, + —172
2r 2r

The characteristic equation is then rearranged so that the left side is an exact
differential of the invariant under Whitham theory, and the right side is then an
order of magnitude smaller than that in a standard characteristic equation

11



1/2 K
d<; - B.r t+ k Fr > = [}ot(e +p) - B, + ”—7jaé]<ir (2.33)
2r

Thus,
x=Bwr-kmFr1/2+fEdr+Ac
where
kP
E =cot{(d + p) - B + —=
1/2
@ 2r /

and A is a constant of integration. E is smaller than cot(6 + p) and thus
allows the step size to gradually increase to several body lengths in the far field.
A similar procedure is used for the bow shock and for embedded shocks. A more
detailed description of this procedure is found in reference 1. It is determined in
reference 1 that errors of less than 1 percent are present in ground signatures even
when the radial step sizes are allowed to increase gradually to several body lengths

in the far field.
3. COALESCENCE OF SHOCKS
3.1 Axisymmetric Shock Coalescence
3.1.1 Governing equations.- Once removed from the axis of the body, the treat-

ment of the shock interaction for the axisymmetric case becomes the same as for the
two-dimensional case. Thus, when the shock angle is defined, the oblique shock equa-

tions may be used.

Incoming shocks f1(r) and f,(r) are given, and it is assumed that the point
of intersection p, has already been determined. (See sketch C.) Theory tells us

f3(r) Resultant shock

C) /_,,—h(x) Slipstream

fl(r)

Incoming
shocks

fz(r) f4(r) Weak shock of

opposite family

Sketch C
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that from a shock-shock interaction of this nature, we may expect a resultant shock
f3(r) of the same family, and a slipstream h created because of the difference in
entropy of the flow passing through one shock and that passing through two shocks.
Because the pressure and flow direction must be equal at the slipstream, a weak
(isentropic) expansion or shock f4(r) of the opposite family may be needed to allow
both conditions to be met.

In this situation, the unknowns are u,, Vgr Pgr Tyo Ve, Uz, Py Tg, B3,
and B4, where f is the shock angle with respect to the flow ahead. The standard
oblique shock equations are

u 6M )
1,n - 1,n (3.1)
5,n M2 + 5
' 1,n
2
™ -1
Zs . Tn (3.2)
jo) 6
1
= 3.3
Vi,¢ = Vst ( )
T (7M2 - 1)(»42 + 5)
= =2 len 1.0 (3.4)
T1 36M2
1,n
The conditions holding across the slipstream h(x) are
6 =06 3.5
4 5 ( )
and
= (3.6
P4 P5 )
and across the isentropic wave in regions 3 and 4, we require
= o7
T4’T T3'T (3.7)
Pa,r = P3,r (3.8)
2\-7/2
p—: (1 +b54_> (3.9)
Pr
2\-1
T M
,—r—= (1 + 5 > (3.10)
T
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The system consisting of equations (3.1) to (3.10) is closed with 10 equations and
10 unknowns. All values in regions 1 and 3 are known.

3.1.2 Method of solution.- The solution process is bequn by assuming an initial
value of 83; the guess used is

63 = (61 + Bz)/z

Using equations (3.1) to (3.4), U, Pg, Vg, and T are calculated. From equa-
tions (3.5) and (3.6), values for 6 and p, £ are obtained. Because total pressure

and total temperature in regions 3 and 4 are equal and because all information in
region 3 is known, equation (3.9) may be applied in both regions to calculate

o 2/7
M2 =5 (1.0 + O.2M2)—3 - 1.0 (3.11)
4 3 P,

and equation (3.10) can be used to calculate

T i E.O i (M§/5>J (3.12)
4 1.0 + (M:/s)

Since this is a perfect gas

a_ = \[YRT (3.13)

u, = 4.4 (3.14)

4
2
V1 + tan 94

and

= t .
v4 u4 an 94 (3.15)

The Prandtl-Meyer angle in both regions is

1/2 1/2 1/2
_ [y 1 =M {x=2\(,2 _ - -2 -
vy = (Y — 1) tan [(Y n 1)(»44 1)] tan (M4 1) (3.16)
1/2 1/2 1/2
_ (x+1 '1_‘L1(2_) _ -1(2_)
v3 = (Y - 1) tan [(Y " 1) M3 ‘1] tan M3 1 (3.17)

14



The angle of the weak wave f4 is calculated using the standard pressure ratio
equation

By = sin —_— (3.18)

It has already been determined that the wave £ must be of the opposite fam-
ily. If it is an expansion, then p, < P, and therefore, M, > M and Vg > V3.
Also, because it is of the opposite gamily, then 94 > 6,. Similarly, if it is a
shock, then Py > P3s M4 < M,, v, < Vi and 94 < 93. The error in the original
guess 63 is assessed by calculating

Error(N) = (v4 - v3) + (93 - 64) (3.19)

To iterate, a new value of B 1is assumed, and all calculations are repeated. After
the second iteration, a straight line extrapolation is used to guess a new value of

63(N)

Error(N-2) B, (N-1) - Error(N-1) 53(N-2)

BB(N) = Error(N-2) - Error(N-1) (3.20)

where N represents successive iterations after the second., Iterations are
continued until

Error{N) < €

where € 1is some predetermined error criterion. Generally, convergence occurs
within five or six iterations even when the error criterion € 1s on the order of
10~10 for weak shocks. Once the angles 63 and B, have been determined, the
entropies S, and Sg may be calculated using standard shock equations. The slopes
of the shocks and slipstream are

1

£ = (3.21)
3, tan(B3 + 91)
£ = L (3.22)
4. tan(B4 + 63)
and
v
h = tan-1<—4> (3.23)
X 114
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3.2 Asymmetric Shock Coalescence

3.2.1 Derivation of shock equations.- The shock conditions across the resultant

embedded shock x = f3(r,¢) are now developed. The region ahead of the shock is
denoted by the subscript 1 and that immediately behind the shock by the subscript 5.

The conservation conditions across the shock are

Mass
f
Y13 ¥sts
Pp\yy - vify - ——;Tik =m = pgl\ug - vgfy - —-;?Jk (3.24)
r r
Momentum
+ = + 3.25
mu1 P1 muS P5 ( )
£+ =u f_ + .
Wty TV T U5ty T Vs (3.26)
r r
f f
e e
u Tt W, = Uy T+ W (3.27)
Energy
2YRT 2YRT
2 2 1 2 5
uy F VYW Ty T g Ve oW+ v (3.28)

To avoid difficulty as the shock strength becomes weak, these equations were

rearranged in reference 3 to yield the following three governing equations:

and

16

-— + - =0 .
(us u1)f3 Ve <V, (3.29)
r
f
e
(us - u1) =t Wy -w, =0 (3.30)

(3.31)

(y + 10,0 - (y - 1)Qf 2yRT | 1 + f§ +

La Hh
N W



where

These three equations are used to provide solutions for u, v, and £ in the plane
of symmetry. To determine p and T, equations (3.25) and (3.28) must be used.

The asymmetric shock conditions are developed when each of these equations is
differentiated twice along the shock surface with respect to ¢, and then ¢ 1is set
equal to 0 to reflect conditions in the plane of symmetry. In the plane ¢ = 0, the
first derivatives with respect to ¢ of all variables and shock surfaces vanish with
the exception of w,. A detailed description of this derivation will be given for
shock equation (3.28).

Let

The derivative along the shock surface x = f3(r,¢) with respect to ¢ 1is

5 3 o

_ 332
20 - 00 ox T 3o

<

The first derivative with respect to ¢ 1is

oA oA dA
+ = =A_f + A
0 x 3
o 00 F3y ¢

The second derivative then yields

2

A _ 0 o)
—S == (A f, +A | f +>— [Af, + A
b¢2 ox ( ble 3¢ ¢) 3¢ o¢ ( X 3¢ ¢)

Note immediately that the first term in this expression will vanish in the plane
¢ = 0, since the factor f3 vanishes. Thus, this term will not be expanded

¢

further, Working only with the second term, then

o)
o¢ ( X 3¢ ¢> xb 3¢ 4 3¢¢ (1)

Again, the first term of this expression also vanishes in the plane ¢ = 0.
Therefore, in the plane ¢ = 0

17



Expanding A, and A¢¢ yields

In the plane ¢ =0

A =u f -u f + v - v
X 5 3 1.3 5 1
X "r X "r X pe
and
A = 4 f + u_f - u f - u + v - v
5 3 53 1 3 13 5 1
W S O o6 4o r red  Ced b
Therefore
2
3 A
a¢2 = (usxf3r - u1xf3r + v5X - v1x)f3¢¢ + u5¢¢f3r
=0
+ u_f - u f - u f3

The bar (~ ) and tilde (™) over symbols denote values in the vertical plane ¢ = 0.
Thus, the asymmetric version of equation (3.29) becomes

(usxf3r - u1xf3r + V5x - V1x)f3 + (qu3r + qu3r - u1f3r - U1f3r + vg - V1) =0
(3.32)

By a similar method, equation (3.30) becomes

~ -— -

) f - ~
. =__3_(_u1__u_5)+ ke (3.33)
5 r 1
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where

o
~ 0l y=0
A

and equation (3,31) becomes

- o~ ~ -2 - o~
2YR KT,le?’ + T1)(I + f3r)] + 4yRT, f3rf3r + —ra-

= (y + 1)(6155 + 5165) - 20y - D;1G (3.34)
where
~ -~ - m o~ ~ ~ - o~ 2;:7]'_
9 = ule3 lefBr 3t 9 Vif3r - v1f3r Tr
and
Qi =u, - Vif3r (i =1,5)

3.2.2 Asymmetric analysis.- The three-dimensional geometry of the shock coales-
cence is described by sketch D, and the geometry in the plane ¢ = 0, by sketch E.

Resultant shock

Contact surface

= h(x,¢)
* Isentropic
shock or
expansion
Incoming shocks 2,
Sketch D
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Sketch E

Incoming shock waves x = f1(r,¢) and x = f2(r,¢) coalesce to form the following

system: resultant shock wave x = f_(r,¢), slipstream r = h(x,¢), and a weak
(isentropic) wave of the opposite fa%ily x = f (r,¢). This results in five surfaces
intersecting along the line x = X{(¢), r = R{(¢}J. Taking the second derivative along
each of the intersecting surfaces with respect to ¢ and setting ¢ equal to O

yields

£ (3.35)
X (3.36)

Along the slipstream surface r = h(x,{), pressures and flow direction on either

side are the same. Thus,

Py = Ps
> A
V4-n=0
> A
Vg *n =0

where n is the normal to the slipstream defined by

The equations for flow direction at the surface h become

h
—u.h +v, -w, =2 _o (i = 4, 5)
1 X 1 r
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Second derivatives along the slipstream surface with respect to ¢ are calculated by
using

22—=h _6_+i
2
0 ¢¢ or 6¢2

and thus the pressure equation yields

~

P4rh

~

+ py = Esrﬁ + Ps (3.37)

and the flow equations

W, hh+v, h-ounh a.h v 2ugf 0 (3.38a)
—u4rhxh * v4rh T Uk T Wk Y Yy T Ty B ->ea
u. hh+%v._h - un a.h v 2u5h 0 (3.38b)
-usrhxb + VSrh - u5hX - uth + Ve - 77 = .

The three shock equations for the asymmetric quantities (egs. (3.32) to (3.34)) were
derived in the previous section and are valid from regions 1 to 5 across shock £,.
To calculate T behind the shock, the original energy shock equation (eq. (3.28)
may be used. Taking the second derivative of this equation with respect to ¢ and
setting ¢ equal to O yields

-- = == == 2y - - ~
Eususx gy F vy - 2vyvy + o T T | B3

-~ -~ N a2 -~ -~
+ [ 5% - 2u1u1 + 2w: - 2w1 + 2v.v_ - 2v. Vv

+ (—L“Yz_ 1)(65 - '51)] =0 (3.39)

—~—
- a _ _ = ~ s 2 . 2
S5 = S1 (SS S1x)f3 + > o - M1 sin" B (3.40)
1
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where AS h is the jump in entropy across the shock,
s

T~ 2 2) ~2
W2 sins (a3/e2 sin’g | (.2, 2\™
; sin B = 2 q, sin B .y
a -a,

2(U1 - Vi f3r) E1 - V1f3r + (u1x - vy xf3r)f3 -V f3r —(wa3/ )]

1 + F2 )52
(" B)5

r 1
a. - v, f ~2
(u1 v1f3r) a)
- — -
1 + fg aq
and
AS
d sh _ ( 2y 1 y 1
2 R -1 2 2 - - 1| 2 2
dM1 n ¥ }2yM1 sinB - (y - 1) Y Ed1 sin B
r

y -1
M12 sinzﬁ (y = 1) + 1

_ Y 1 _ 1
v ny sin26 - l—;—1 (M sinZB)E&f sinzg (.Y_;_1) + j]
From the relation
d 4
ds = ¢ 4ar - R e
pT P
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one gets

B T p . ~ o~
s = ——JL-):E'-‘:E £ + (——1;—)$--'§
Yy - 1p P Yy-1r »p

This equation can then be used to get 5 in region 5, or

. .
-1 v Y 5x Fsy : v \5_:
Pg = Y- 1) S o W eV T, S

(3.41)

For the examples shown in this paper, the surface x = f (r,¢) is an extremely weak
(isentropic) shock or expansion wave across which the variables are nearly continu-

ous. We therefore introduce the approximations that

Uz = Uy
V3 = Vg
P3 = Py
S3 = S
T3 =Ty
w3 = wy

Taking the second derivatives of the above relations along the weak surface
yvields the following five equations:

~ ~

'l-13xf4 + uy = 'lJ.4Xf4 + uy

ot
w
s
Hhe
=Y
+
lie]
w
|
o]
>
Hh
>
+
o]
P

n
W
»®
Hh
N
+
w
w
1
wni
>
X
he
Y
+
2]
(-9

£

4

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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and the following equation is retained for w:

W3 = W _ (3.47)

o The unknowns in the asymmetric system are §,~ R, E3, f4, h, 53 s hy,
u4, vVvar w4, T4, S4, Pas us, vs, ws, Ts, Ss, and Dpg. The equa%ions_valid
in the system are the five intersection equations (egs. (3.35) and (3.36)), the two
slipstream equations (egs. (3.37) and (3.38a)), the six shock equations (egs. (3.32)
to (3.34) and (3.39) to (3.41)), and the six continuity equations from regions 3 to 4
(eqs. (3.42) to (3.47)). There are 19 unknowns and 19 equations for the system. The
system is closed. The slipstream flow equation (eg. (3.38b)) has been discarded
because of the continuity approximations made across f,. It is found that the
approximation of continuity described above yields a rapidly converging solution

whenever |(P4/P3) -1 < 1072,

~

When I(P4/P3) - 1| > 10—5, it is necessary to treat f, as a finite shock or
expansion. If £ is a shock, then the complete set of shock equations (egs. (3.32)
to (3.34) and (3.39) to (3.41)) instead of equations (3.42) to (3.47), are applied
from regions 3 to 4, equation (3.38b) is used, and a new unknown %4r is introduced.

The system then contains 20 equations and 20 unknowns. If £, is a finite expansion
wave, the appropriate isentropic expansion equations are used.

3.2.3 Asymmetric solution process.- For the incoming shocks f1 and f2, the

~ ~

values of €1r' Ezr' £1, £9, E1r' and Ezr are already known from the MMOC

program. Equation (3.35) can be applied to shock surfaces 1 and 2 to solve for

~ £, - £
R=—c2 "1 (3.48)
f1r - f2r
and
)'E = E1r§ + E1 (3.49)

Knowing X and ﬁ, equations (3.35) and (3.36) may be applied to shock surfaces 3
and 4 to solve for

fi =X - £5 R (5 = 3, 4) (3.50)

and

X (3.51)
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where £_ , £ , and h are known from the axisymmetric solution. Since every
X
r r
thing is known in region 1, all bar (T) quantities are assumed knoyn, and f3 is now
known, then equation (3.33) may be immediately used to solve for wg; i.e.,

RN -
Bl A Nl =P (3.52)
5 r 1

Similarly, since all quantities in region 3 are known, equations (3.42) to (3.46) may
be solved for the tilde (™) variables in region 4. (If equation (3.47) is tested and
the shock equations are needgd at f,, a double iteration procedure is used to deter-
mine an additional unknown f4r.) These guantities are

ug = uz £4 + uz - ug fy (3.53)
Vg = V3 fq+ V3 - vy By (3.54)
Pg = 53Xf~4 *+ p3 - 54,{%4 (3.55)
Tg = T3 f4 + T3 - Ty f4 (3.56)
Sq =53 f4+ S3 - 54 f4 (3.57)

To solve for the other tilde (™) variables in region 5, an initial guess is made
for the value of f3r

z _ ~ ~
3 1/2<f1 + f2 >
r r r

Equations (3.32) and (3.34) are then used to solve for GS and Ve
. \G1 —L2 +L3 _f3r+L1
Vg = (3.58)
1 + E2
3r
~ . Ly - ¥
u. = u, + —er——Ji (3.59)
5 1 r
3r
where
2w
L =vf +(lu -v £ -—JF
3 5 3 5 5 3 r 3
r X x “r
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By

B3

20y = 10910

(y + 1)010s5

) 5
4a1 f3 f3 +-—5
r r r
2y|11 + E% ;1 E3 + %1
r X
u5 - v5f3
r
u1 - v1f3
r
L . 2&153
u1 f3 - v1 f3 f3 + u1 - v1f3 - v1f3 - ”
X X r r r

Using equation (3.39), %5 may be obtained as

where

26
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Equation (3.40) is used to solve for §5, and equation (3.41), for 55. The error in
the iteration is evaluated by using equation (3.37)

~

= et - 5 h + 5 -
Error(N) (p4 P )h P, = Pg
r r
A new guess for §3r is made, for example,

f3,(2) = 1183, (1)

and all variables from 35 forward are recalculated with the new %3 . From the
values f3 (1), error (1), £3,.(2), and error (2), a straight line approximation is

used to determine the new %3r

f3r(N—2) Error(N-1) - f3r(N—1) Error(N-2)

r Error(N-1) - Error(N-2)

The process is repeated until

Error(N) < €

where € 1is a predetermined error criterion. For the examples shown, even if € is
10-10, convergence occurs within five iterations. After convergence, equa-

tion (3.38h) is used to calculate hy.

h = %—'—u hh+v.h-unh_ +v. - (3.61)
u

If the shock equations are used at f4, then equation (3.38a) is used to check
convergence

2w h

o

The solution process for the asymmetric equations is summarized in the flow
chart shown on the next page. The solid lines on this chart represent the case in
which the wave £ is so weak that continuity may be assumed for u, v, p, T, S,
and w. The dashed lines are used to represent the double iteration procedure which
must be used when the shock equations are used at f4. In that case,

27
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equations (3.53) to (3.57) must be replaced by equations comparable to equations
(3.52), (3.58) to (3.60), (3.40), and (3.41)) to solve from regions 3 to 4.
4, SPATIAL DERIVATIVES NEEDED FOR ASYMMETRIC SOLUTION
4.1 Spatial Derivatives in Regions 4 and 5
The system of equations for nonaxisymmetric shock coalescence (egs. (3.24)
to (3.47)) is a closed system with the assumption that all spatial derivatives of
u, Vv, p, and T are known, The method used to obtain these derivatives in

regions 4 and 5 is now explained.

In region 5, the following four governing flow equations are valid:

Xx-Momentum

+ p.v.u, + T.p. =0 (4.1)

r-Momentum

p_u + PV = - RT 4.2
PgligVs * PgVgVs = “9Pg 5P5 (4.2)
X r r
Continuity
PgTgls + PgTgVg = UgPgTy -~ VgPgTy
X r x r
- - - - - i-’5E5 -
+ TPy + VeTcPe = = —7 6"5 + VS) (4.3)
X T
Energy
-2 — - - - - - -2 - - - - -
= 4.4
uSTSu5x + usvsvsx + usvsu5r + v5vSr + ?—¥—T-u5T5x +-;{%fr'V5T5r 9V ( )

Because of the weakness of the wave between regions 3 and 4 and the continuity
assumption made, f4rr does not appear as an unknown in the system. We therefore

apply only three flow equations in region 4 - the two momentum equations and the
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continuity equation. The energy equation is used only as a check for the continuity
assumption. The equations in region 4 are

Paugly * PaVyuy * Typy =0 (4.5)
r X
AN + PyVsV, + RT4p4 = -gp, (4.6)
X Y r
PyTy Y * Py Ty UPpTy = VgPyTy + 9 TyP,
p.T
- - - aTa,mn -
FVeTPs T T (W4 * V4) (4.7)

The other equations needed for this system are derived by using the principle
that the tangential derivatives of the shock conservation conditions across a wave
are continuous and a theory developed by Lin and Rubinov in reference 21, which shows
that if the curvature of a shock is known, then the spatial derivatives of the hydro-
dynamical properties behind the shock can be found.

Looking first at the weak wave f4, it has already been established that the
properties v, v, p, T, and S are continuous across this wave for the case con-

sidered. The tangential derivative along the wave x = f4(r) is

For each of the properties, then, the following equations hold:

u, f4 + u, =u, f4 + uy (4.8)
X r r X r r

4 f4 + v4 = v3 f4 + v3 (4.9)
X r r X r r

p. £ p. =p. f It 4.10

P, f4 + P, P, f4 + P, ( )
X r r X r r

T f T =T f T .11
4 f4 + T, T, f4 + T,y (4 )
X r r X r r
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From the conditions at the slipstream

p p. h =p b h 4.1
Py + Py hx ( 2)
x r x r

and from the conditions of flow on either side of the slipstream

n hx + u4hxx - v4 + 4 hx - P hx =0 (4.13)
X X Y r
L h +ah -v. +u B2 -V R =0 (4.14)
5 'x B xx 5 5 x 5 x
X X r r

The remaining equations in the system are derived from the following four shock
equations:

Continuity of mass

—~~
[«}]
(8]
+
[=1]
=
=
(94}
}
e
=
+
—~
<1
(0]
+
<
= _
i
wn
§
<1
Nl
+
—
£
(8]
+
£
= _
%>
(9]
1
£
iV

Combination of all shock equations

2

= -2 % - = -2

2vF {1+ B2+ 2 | = (v + 15,0, - (y - 10]
r
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Taking the tangential derivative of each of these equations along the resultant
shock f3 yvields the following four equations:

+ PTg Q) - Py TyQg - PgT g + PgT Vg Ty
r r
* PgTyf3 + PyTgv ity <p5T1 Qy = Py TRy = P1T5Q, >f3
rr X r
2% o -p T8 -pTu ST%v F +pTvE 4.15
* pgT, QO - Py TsQ - PTgu, + pyTev, £y PitgVet, ( )
Y r Y r Y rr
<u5 f3 + V5 >f3 + u5 f3 + u5f3 + v5
X r X Y r r ry r
- 4 F +V. F +04 F O+uE +% (4.16)
1 53 1 53 1 53 173 1
X r X Y r r rr r
( s T WYt VsVs - VyVy o Ty T T T >f3
X X .4 X X X r
34 - 5o Y -vy +—Y _§ X 7 = 7
* Uglg Yty VgVy Vavy Y -1 Ts v 0 (4.17)
Y r Y Y r r
of(m . +7 \[1+F |+ 2TE % -l + 1o
YT %3 1 3 113 %3 =1 9 %
X r r r rr X
+ 0.8, - 0,v F, )- (y = 1) 2Q1Q1]f3 + [(y + 1)(u1 5
X X r X r r
- vy Qfy - Qvify  + Qug - Qvg £ - Qv )
Y r rr ) of r r rr
-y -1 20 <u1 -V, i, -V i )] (4.18)
r r Y rr
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If it is assumed that all guantities in regions 1 and 3 are known, then the
unknowns in the system are Uy v Yy Py T4 PoUy i Y, P, s T4 P
_ _ X X X X r r r r
U + Vg r Pg s T5 r U s Vg, Py s T5 , the curvature of the slipstream h
X X X X r r r r
and the curvature of the resultant shock f£f5 . This system of 18 linear equations
rr
is closed and has 18 unknowns. A matrix solution of this system yields the needed
spatial derivatives for the system of equations (3.24) to (3.47).

xx’

4,2 Spatial Derivatives in Regions 1 and 3

For the spatial derivatives in regions 4 and 5 to be found, it is necessary that
they be known in regions 1 and 3. By the use of characteristic equations and some
difference methods, some of these have already been calculated in the MMOC program.
In region 1, already available are Gx' v , and §x'

Once it has been determined that an intersection occurs before the next C~
characteristic, then the characteristic subroutine is called as if the shock were not
there., Data points 1t and 3 (see sketch F) are used to calculate the location of

\*\(i\) (Xe,Ra)
T\\\ (2)

~cCcT (1)

' v
(Xe,Re) : s

C (I-1)

Sketch F

point 2 and all variables at point 2. A straight line interpolation is made along
C” between points 1 and 2 to get all values at Xe on that characteristic. BAnother
interpolation is made along C*' between points 2 and 3 to get values along this
characteristic at Xe, Values at (Xe,Re) ahead of the first shock are then found by
interpolating between Ra and Rb to get values at Re., Values of ﬁr and V.

are estimated in region 1 at (Xe,Re) by a simple difference equation between Ra and
Rb,

- ua - ub

_ L ub 4.19
Y " Ra - Rb ¢ )
5 —Yvya-yvb (4.20)
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With these values of W, and ¥, and the values of 4, ¥V, and §, already
provided by the characteristic program, other spatial derivatives in region 1 are
calculated in the following manner. From the x-momentum equation,

!

- 1 - - - - - -
Py =2 <'p1 1% TP > (4.21)
X 1 . r .

From the entropy equation,

(y = DT, [ _ Py
1 Y 1 =
X X P
1
From the r-momentum equation,
5 =+ f[gp -puvV -DPVV (4.23)
1 RT 1 111 111
r 1 X r

- - - - - - TPV,
+ vyT,P; = WP T, + o : (4.24)

Equations (4.21) to (4.24) along with the derivatives already provided define all
spatial derivatives needed in region 1 to determine the solution in regions 4 and 5.

The spatial derivatives u , u., v, p., P, T, and T_  are also needed
x r x X r x r

in region 3 to provide information for the solution in regions 4 and 5. The values
for ﬁx’ ﬁr, Gx’ Gr' and §X are provided by the MMOC program using the char-

acteristic equations behind the second shock. (See sketch G.)

Shocks

Sketch G

34



Again, the flow equations are used to provide the additional spatial derivatives
needed in region 3

x-Momentum

- 1 - = = - = - .
Py =T (‘p3u3u3 T P3V3l3 > (4.25)
X T X r
3
r~-Momentum
p. =—|-gp. - P.U.V. = P.V.V 4.2
P3 - (gps P3U3V3 P3V3¥3 > (4.26)
r RT X r
3
Entropy
_ (y + DT, Py
T, = S, +— (4.27)
Y 3 -
X X P,
Continuity
F. o= ——(T.P.0. + T.p.v +T3p3w3
3 T pv_{T3P3Y3 3P3V3 r
r 33 b
- - - - - - - - = '5353:’3>
* ugTspy + "3T393r T UPyT3 T (4.28)
X

Equations (4.25) to (4.28) and the derivatives provided by the characteristics
in the MMOC program are used to determine the required spatial derivatives in
region 3. There is now sufficient information available for the linear system in
regions 4 and 5 to define all 16 spatial derivatives needed there.

5. PROCEDURE FOR COMBINING COALESCENCE WITH MMOC PROGRAM
5.1 Establishing Point of Coalescence

In the MMOC program, calculations are performed from the bow shock along the C~
characteristic until either the last data point on the previous characteristic is
reached or until the initial data line is intersected. (See sketch H.) The embedded
shocks are either included as input, or else they occur during computation when char-
acteristics of the same family cross each other. The program keeps track of the
location of each embedded shock, and when each is reached, a separate routine is used
to calculate the solution. The embedded shock routine uses the shock equations and
the compatibility equation along the ct characteristic from the previous C~
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Bow shock

Embedded shocks

c (1)

C (I-1)

Sketch H

characteristic to determine the solution just behind the shock. (See sketch I.)

These equations determine the shock position, slope, curvature, and all variables
behind the shock.

Embedded shock

C (I-1)

Sketch I

The program monitors the location of all shocks, and when they are close to each
other, a test is made to see if they cross each other before the next characteristic
line, This test involves a straight line extrapolation of both shocks to estimate
their intersection point Xe and an estimate of the point XI at which the first
shock crosses the next C~ characteristic as shown in sketch Jd, If Xe is less
than XI, control is passed to the coalescence routine with all data on the I-1th
characteristic known and the data at points 1, 2, and 3 held.
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Sketch J

The following steps are then taken to determine the intersection point (Xe,Re)
(see sketch K):

Cc (I-1)

Sketch K

(1) Interpolate between data points 1, 2, and 3 to get values for all variables
just ahead of the estimated intersection point in region 1.

(2) Use the results of step 1 as data just ahead of the shock., Call the subrou-
tine of the MMOC program which finds embedded shock solutions, This subroutine gives
a local value of B; at Xe and the values of all the variables just behind the

first shock.
(3) Take the values of all variables behind shock 1 as the values in front of

shock 2. Call the embedded shock subroutine to get the shock solution. This gives a
value of 55 and the values of all variables in region 3 at the intersection point.
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(4) Adjust B4 by taking B4 pey = (61 + B;)/2 and B3 new = (52 + Bé)/z-
Calculate a new value of (Xe,Re) using the adjusted values of @7 and B5.

(5) Repeat steps 1 to 4 until the adjusted values of § change less than
some error criterion &. Generally it is found that only thP68 or four iterations
are necessary with the error criterion on the order of 10-10,

When the above iteration has converged, the location of the coalescence point
(Xe,Re) has been determined. Also known are the values of the variables in regions 1
and 3, the local shock angles B4 and B, and the local curvatures %1 and %2 at
the intersection point.

5.2 Local Solution

Since the point of intersection and the data immediately ahead of this point are
known, the spatial derivatives in regions 1 and 3 can now be found by the method
described in section 4.2. The axisymmetric solution described in section 3.1 is now
performed. This solution provides values for the variables E, ;, 5, E, and §
in regions 4 and 5. It also provides the local slopes of f_, £ , and the slope of
the slipstream h. The axisymmetric solution is independent™of any of the tilde
variables and Q, and is found without iteration once the position of intersection is
solved. The linear system described in section 4.1 is solved for the spatial deriva-
tives of the variables in regions 4 and 5. There is now sufficient information to
perform the asymmetric solution as described in section 3,2. This solution provides
the values for u, v, 5, T, and S in regions 4 and 5 for ﬁxr h, f3, f4,
and f3r. The local solution is now complete.

5.3 Incorporation of Solution into Characteristic Network
The resultant shock fg3 ig extrapolated linearly upward to obtain a first

approximation of its intersection point with the Ith C~ characteristic, as shown in
sketch 1., Data at points 1 and 2 are known from the calculation described in

c (I-1)

Sketch L
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section 5.1, BA linear interpolation is used to f£ind the value of all variables ahead
of Xp, the intersection point. From the shock equations, the data ahead of the
shock at Xp, and the C*t characteristic running from behind the shock at Xp to
the top of the slipstream, a solution is found for 55 at Xp. B3 pey 1S calcu-
lated using (ﬁ3 + Bg)/z, and the process is repeated until @ "“does not change
between iterations. 3/new
The point Xp and the data immediately behind the shock at Xp have now been
determined. To retain the effects of the data below the slipstream, a new C~ char-
acteristic (see sketch M) is calculated from the intersection point (Xe,Re) using the
data from region 4., The characteristic subroutine is called with data at points 1

/—R T~cT (1)

Slipstream

c (1-1)

Sketch M

and 2 to calculate point 3, at points 1' and 3 to calculate point 4, and so on, until
the end of the data on the I-1th characteristic is reached.

At this point, it is recognized that the difference in entropy across the slip-
stream is extremely small., It is convenient, therefore, to disregard the actual
location of the slipstream and to allow the tangential discontinuity to become
smeared in the region between c' and f,. The remainder of the Ith characteristic
is now calculated using data from the intermediate characteristic c'. The effects
of the data above the slipstream are felt in the location of Xp and in the data
immediately behind Xp. (See sketch N,) The effects of the data below the slip-
stream appear

Sketch N
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in the value of the variables on the ! characteristic. To complete the Ith char-
acteristic, the characteristic subroutine is called using points 1 and 2 to calculate
point 3, and so on, until the characteristic is completed, Control of the program
now reverts from the shock coalescence routine to the main program. If, instead of
two embedded shocks intersecting, the how shock intersects an embedded shock, the
same procedure is followed with simplifications made because of the constant values
ahead of the bow shock.

6. RESULTS AND DISCUSSION

The MMOC is a propagation method rather than a prediction method. Thus, flow-
field input data on a cylindrical surface at approximately one body length from the
axis must be supplied either from experiment or hy use of computational methods. To
employ the MMOC in an axisymmetric case, the initial data must include x, ¥, 6,
M, =z, and S/R at points on the cylinder in the plane ¢ = 0. 1In addition, the
strength of the bow shock and the location and strength of any embedded shocks must
be given. For asymmetric cases, u, Vv, w, and S/R are also required.

At the outset of the current work, it was felt that the flow-field computational
method described in reference 25 represented the most accurate means available for
predicting the data required as input to the MMOC. There also exist two alternate
methods which can be used to calculate the field in the vicinity of the body, and
both of these are also able to handle shock coalescence if they are allowed to calcu-
late to the far field. The first, referred to as the modified uniform atmosphere
method (MUAM), is described in reference 26, In this method, based on Whitham the-
ory, a uniform atmosphere is assumed, and a geometric mean correction for ambient
pressure {E;E;' (where p_ is the pressure at the calculation altitude, and Pq is
the ground pressure) is employed. In the second method, denoted as ARAP, geometric
acoustics theory is used, and variable density in the atmosphere is accounted for.
Fach of these methods requires as input a description of the body and the flight

conditions (ref. 27).

Since the axisymmetric shock coalescence is a new feature of the MMOC, it was
initially decided to exercise this version of the program. 1Input data were provided
for the MMOC at d/f = 0.2 by the method of reference 25 on a body of revolution to
compare the extrapolated results of the MMOC with results predicted by the MUAM and
ARAP programs. These axisymmetric results are discussed later in this section,

The same body of revolution was placed at a small, positive angle of attack in
order to obtain nonaxisymmetric data, and the method of reference 25 again was
applied to calculate the required quantities at d/f = 0.2. At this point, two dif-
ficulties arose which ultimately led to a decision to abandon the method of refer-
ence 25 in favor of a less expensive, and presumably somewhat less accurate, determi-
nation of the required data. First, the scheme of reference 25 is used to calculate
quantities on a c¢ylinder coaxial with the body and not on constant r, as required in
the current work. Second, the presence of cross-derivative terms proportional to
1l/r throughout the asymmetric version of MMOC eguations gives rise to numerical
difficulties unless the initial surface is at least one body length away from the
axis, a distance which requires excessive computation time when the method of refer-
ence 25 is used for flow Mach numbers of 3 or 4. Since the aim of the current numer-
ical computations was only to demonstrate the results of the new analysis, it was
felt that continued use of this method for obtaining input data was not justified.
Rather, it was decided to make use of the MUAM to determine appropriate data as input
to the MMOC. The MUAM was modified to calculate cross-flow components, and the
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derivatives with respect to ¢ needed as input to the MMOC were calculated from
their analytical expressions in the MUAM program. Accordingly, figure 1 includes the
body used and the results obtained with the method of reference 25 for the axisymmet-
ric case. All other results were obtained using a different body, and the MUAM was
used to provide initial data for the MMOC at 4/ = 1.0.

Axisymmetric data for the body of revolution shown in figure 1 were obtained
using the method of reference 25 on a cylindrical surface at 4/2 = 0.2, The pres-
sure signature in the plane ¢ = 0 at this radial location is shown. The MMOC pro-
gram was then used to extrapolate this field through 900 body lengths to the ground.
The resulting pressure signature is illustrated at the bottom of figure 1, It is
emphasized that the evolution of the signature in fiqure 1 involves the coalescence
of three shocks. Thus, even though it represents an axisymmetric case, this result
cannot be obtained by using the MMOC without the analysis reported in the current
paper. No comparison of this result with predictions of the MUAM or the ARAP pro-
grams was made, since it was found that these methods had difficulty converging to a
solution at 0.2 body lengths from the body.

Correlations of MUAM and ARAP results with experimental data are shown in fig-
ures 2 to 4., Figure 2 shows a comparison made in reference 26 for a body of revolu-
tion at an angle of attack of 0° and a Mach number of 2,96, Though the bow shock
amplitude is not predicted accurately, the expansion and tail pressures are well
defined by the MUAM. Figure 3 shows a comparison of MUAM results with experimental
data from reference 28. These data include angles of attack of 3° and -3° at Mach
numbers of 1.41 and 2.01., The data points were read with pressure orifices on a
reflection plate, and thus, a reflection factor of 2 has been used in the MUAM
results. The experimental data show some scatter in these figures, but the pressure
levels and trends are still rather well predicted by the MUAM at these distances for
all angles of attack shown. No pressure data were available to verify pressures from
the MUAM at an azimuthal angle other than ¢ = O.

A correlation of flight-test data with ARAP predictions was made in refer-
ence 7. Figure 4 is a reproduction of one such correlation made for Mach numbers
of 1.35 to 3.00 over an altitude ranging from 35 000 feet to 70 000 feet. This
figure shows that both the amplitude and the duration of the flight-test signatures
were well predicted by the ARAP program.

As originally written, the ARAP program was a sonic boom propagation method
which required the Whitham F function as input. It was later modified to accept an
area distribution which was transformed to the Whitham F function. This modifica-
tion is based on having a smooth body with no discontinuities in slope. Though
restricted to bodies of revolution, the MUAM program is not limited to smooth bodies.
A second difference between the MUAM and the ARAP programs is that signals begin from
the axis in the ARAP program and from the body surface in the MUAM program. Thus,
when discontinuities are present, near-field shocks are more accurately located by
the MUAM.

With the experimental data shown then, it is felt that confidence can be placed
in the pressure signature predictions by the MUAM in the near field for a body of
revolution and in the ground level predictions made by the ARAP. Because there are
no experimental data by which we can verify the results of the MMOC, comparisons are
made of the MMOC results and the MUAM and ARAP results. Results from the MUAM at one
body length were used to provide initial data for the MMOC. Comparisons of all three
methods at several intermediate steps of propagation are shown.
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The cone of revolution shown in figqure 5 was used for the rest of the results.
It has slope discontinuities at two locations so that embedded shocks are formed
immediately, and thus, the shock coalescence portion of the program will be exer-
cised, The pressure fields at one body length predicted by the MUAM and the ARAP
for M= 3,00, a = 0° are shown at the upper left of figure 6. '

The two signatures are quite dissimilar. Recall that it is the MUAM signature
which is felt to he valid in the near field and which is, therefore, used to initial-
ize the MMOC., The remaining portions of figure 6 show comparisons of signatures
predicted by all three methods during propagation. WNote that at this Mach numbher and
angle of attack, the MMOC and MUAM signatures remain very near each other through
100 body lengths. At ground level, the bow shock predictions of the MMOC and the
ARAP are very near each other, although the MMOC signature is predicted to be signif-
icantly shorter. The positive and negative areas for the MMOC signature do not
appear halanced in the ground signature in figure 6. However, the wave has been
truncated, and considerable negative area has not been included.

Asymmetric lifting forces are added through an angle of attack of 3° in fig-
ure 7. BAgain, note that the MMOC and MUAM predictions remain very near each other in
the near field (out to two body lengths), with the ARAP signature again being totally
different, In the far-field and ground signatures, however, the shock amplitudes of
the MMOC and ARAP results are very nearly equal, and the overall lengths of the sig-
natures are not very different.

It is noted here that comparisons are made of the shape and duration of the
signature and not of its location in the atmosphere as denoted by the starting loca-
tion X, The three different methods of propagation do follow different paths
through the atmosphere as determined by the position of Ko By observing the loca-
tions shown in fiqure 7, note that shock coalescence of the embedded and bow shocks
has occurred between 2 and 10 body lengths., The ground signatures shown in these
results all include a reflection factor of 1.8.

In figqure 8, even more asymmetries have been added to the flow field by
increasing the angle of attack to 7°. The same general trend is seen in the near-
field signatures. The difference in coalescence rate of the three methods can he
observed in this figure. At two body lengths, the embedded shocks have cocalesced in
the MMOC and MUAM signatures but not in the ARAP signature, and at two and one-half
body lengths, all shocks have coalesced in the MUAM and MMOC signatures. The ground
signature again shows good correlation between the bow shock level of all signatures
but at this angle of attack, the MMOC signature is now the longest of the three.

Figures 9 and 10 show a similar set of comparisons at a = 0° and Mach numbers
of 3.50 and 4.00, respectively. At M = 3,50, the MMOC and ARAP ground signatures
have the same bow shock level, but the MMOC signature is somewhat shorter. At
M = 4.00, the MMOC and ARAP ground signatures are practically identical in both
amplitude and length. In both figqures, the MUAM ground signature predicts the lowest
bow shock and the longest signature,

The experimental comparisons shown earlier for the MUAM and ARAP predictions
indicate that confidence can be placed in the MUAM near-field predictions and in the
ground-level ARAP predictions. These predictions are made based on a description of
the equivalent body of revolution and on the flight conditions. The results from the
MMOC program, when initialized with near-field MUAM data, approach ARAP ground shock
predictions for all cases shown and have nearly the same signature as the ARAP at
M = 4,00.
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The fact that the MMOC program is shown to begin with valid data in the near
field and to extrapolate to valid data (by comparison with the ARAP results) in the
far field makes this a powerful tool in experimental work where predictions are made
by the extrapolation of near-field signals. The MMOC program is also able to make
sonic boom predictions for complex three-dimensional bodies when their flow fields
are provided by other computational methods.

A comparison of the ground signatures when the MMOC program is initialized at
two and one-half body lengths and at one body length, is shown in figure 11. The
signature extrapolated from two and one-half body lengths is shorter and has a lower
bow shock than the signature extrapclated from one body length, This difference is
to be expected because at two and one-half body lengths in fiqure 8, the MUAM signa-
ture is already shorter than the MMOC signature and has a somewhat lower bow shock.

The effect of asymmetries in the case with an angle of attack of 7° is seen in
figure 12. The identical flow-field conditions with no asymmetric effects result in
a signature whose bow shock is approximately 7 percent higher and whose length is
3 percent shorter than the signature in which the asymmetries are included.

Because one of the primary benefits in a program such as the MMOC would be for
the extrapolation of wind-tunnel data to ground-level predictions, the effect of
slight deviations in the determined locations of embedded shocks is an important
consideration. In figure 13, the locations of the embedded shocks were perturbed
about 1 percent, and the perturhed data were extrapolated to the ground., The results
for the perturbed signature indicated approximately 2-percent deviation in the shock
strength and in the length of the signature.

Because a method based on linear theory was used to provide the initial data in
these results, it was possible to calculate the necessary cross derivatives analyti-
cally within the MUAM program. In the course of this study, however, several meth-
ods, including curve fits and finite difference approximations, were used to compute
these derivatives numerically, and it was found that the MMOC program is quite sensi-
tive to their values., Thus, when experimental data or computational results which do
not include analytically determined derivatives of the flow quantities are used to
provide input to the MMOC program, extreme care must be taken in determining values
for the cross derivative data.

7. CONCLUDING REMARKS

A method for analyzing shock coalescence including asymmetric effects has been
presented. This method is based on an extension of the axisymmetric (locally two-
dimensional) solution. The asymmetric effects are introduced through an additional
set of governing equations, which are derived by taking the second circumferential
derivative of the standard shock equations in the plane of symmetry. This shock
coalescence method is consistent with and has been combined with a nonlinear sonic
boom propagation method developed at Mew York University (NYU). The original NYU
program, based on the method of characteristics, is unable to solve shock coalescence
and ceases extrapolation when shock intersection occurs. This is often the case when
data are extrapolated from realistic aircraft configqurations. The combined program
referred to as the modified method of characteristics (MMOC) is capable of extrapo-
lating pressure signatures which include embedded shocks from the near field (approx-
imately one body length from the axis) of an aircraft to ground level, Initial flow-
field data are required on a cylindrical surface at approximately one body length
from the aircraft axis. Flow variables and their cross derivatives are then defined
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in the plane of symmetry beneath the aircraft and used during the extrapolation pro-
cess. The location and strengths of all shocks on the initial surface mist also be

included in the data.

The MMOC program is potentially extremely useful for predicting sonic booms from
configurations where near-field data are provided either experimentally or from flow-
field computational methods. Unlike previous extrapolation methods, the MMOC program
accounts for the variation in entropy and nonlinear effects present near the aircraft
and is thus able to begin extrapolation nearer to the body than the previous require-
ment of about three body lengths. A major benefit of this capability is that sonic
boom models may now be built approximately 3 feet in length (a restriction based on
tunnel size) rather than the previous 6 inches. The larger size will allow a more
detailed, realistic configuration than was previously possible.

Included in the paper are extrapolated results from a body of revolution at a
small, positive angle of attack. This configuration was designed so that embedded
shocks would be included in the initial data and so that the MMOC solution could be
compared with existing sonic boom prediction methods. Comparisons of signatures
predicted by the MMOC with those predicted by two methods based on modified linear
theory show good agreement in regions of propagation where the linear methods have
been experimentally verified. The coalescence method as described contains weak
shock/expansion approximations to determine spatial derivatives behind the wave of
the opposite family, which may be needed to obtain the complete field in the vicinity
of a point where shocks intersect.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 26, 1983
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Figure 13.- Comparison of pressure signatures when location of shock is perturbed.
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